Edit on GitHub
LightGBM
DVCLive allows you to add experiment tracking capabilities to your LightGBM projects.
Usage
Include the
DVCLiveCallback
in the callbacks list passed to the lightgbm.train call:
from dvclive.lgbm import DVCLiveCallback
...
lightgbm.train(
param, train_data, valid_sets=[validation_data], num_round=5,
callbacks=[DVCLiveCallback()])Parameters
-
live- (Noneby default) - OptionalLiveinstance. IfNone, a new instance will be created using**kwargs. -
**kwargs- Any additional arguments will be used to instantiate a newLiveinstance. Ifliveis used, the arguments are ignored.
Examples
- Using
liveto pass an existingLiveinstance.
from dvclive import Live
from dvclive.lgbm import DVCLiveCallback
with Live("custom_dir") as live:
lightgbm.train(
param,
train_data,
valid_sets=[validation_data],
num_round=5,
callbacks=[DVCLiveCallback(live=live)])
# Log additional metrics after training
live.log_metric("summary_metric", 1.0, plot=False)- Using
**kwargsto customize the newLiveinstance.
lightgbm.train(
param,
train_data,
valid_sets=[validation_data],
num_round=5,
callbacks=[DVCLiveCallback(dir="custom_dir")])